Thursday, November 7, 2019
Free Essays on Superconductivity
Superconductivity INTRODUCTION We've all heard about superconductivity. But, do we all know what it is? How it works and what are its uses? To start talking about superconductivity, we must try to understand the how "normal" conductivity works. This will make it much easier to understand how the "super" part functions. In the following paragraphs, I will explain how superconductivity works, some of the current problems and some examples of its uses. CONDUCTIVITY Conductivity is the ability of a substance to carry electricity. Some substances like copper, aluminium, silver and gold do it very well. They are called conductors. Others conduct electricity partially and they are called semi-conductors. The concept of electric transmission is very simple to understand. The wire that conducts the electric current is made of atoms which have equal numbers of protons and electrons making the atoms electrically neutral. If this balance is disturbed by gain or loss of electrons, the atoms will become electrically charged and are called ions. Electrons occupy energy states. Each level requires a certain amount of energy. For an electron to move to a higher level, it will require the right amount of energy. Electrons can move between different levels and between different materials but to do that, they require the right amount of energy and an "empty" slot in the band they enter. The metallic conductors have a lot of these slots and this is where the free electrons will head when voltage (energy) is applied. A simpler way to look at this is to think of atoms aligned in a straight line (wire). if we add an electron to the first atom of the line, that atom would have an excess of electrons so it releases an other electron which will go to the second atom and the process repeats again and again until an electron pops out from the end of the wire. We can then say that conduction of an electrical current is simp... Free Essays on Superconductivity Free Essays on Superconductivity Superconductivity INTRODUCTION We've all heard about superconductivity. But, do we all know what it is? How it works and what are its uses? To start talking about superconductivity, we must try to understand the how "normal" conductivity works. This will make it much easier to understand how the "super" part functions. In the following paragraphs, I will explain how superconductivity works, some of the current problems and some examples of its uses. CONDUCTIVITY Conductivity is the ability of a substance to carry electricity. Some substances like copper, aluminium, silver and gold do it very well. They are called conductors. Others conduct electricity partially and they are called semi-conductors. The concept of electric transmission is very simple to understand. The wire that conducts the electric current is made of atoms which have equal numbers of protons and electrons making the atoms electrically neutral. If this balance is disturbed by gain or loss of electrons, the atoms will become electrically charged and are called ions. Electrons occupy energy states. Each level requires a certain amount of energy. For an electron to move to a higher level, it will require the right amount of energy. Electrons can move between different levels and between different materials but to do that, they require the right amount of energy and an "empty" slot in the band they enter. The metallic conductors have a lot of these slots and this is where the free electrons will head when voltage (energy) is applied. A simpler way to look at this is to think of atoms aligned in a straight line (wire). if we add an electron to the first atom of the line, that atom would have an excess of electrons so it releases an other electron which will go to the second atom and the process repeats again and again until an electron pops out from the end of the wire. We can then say that conduction of an electrical current is simp...
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.